Stereoselective Synthesis of δ-Selanyl Allylic Alcohols by Hydrozirconation of Propargyl Selenides

Mei Hua XIE¹, Lu Ling WU¹, Xian HUANG^{1, 2}*

¹Department of Chemistry, Zhejiang University, Xi-xi Campus, Hangzhou 310028 ²State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032

Absrtact: Hydrozirconation of propargyl selenides afford (E)-3-selanyl vinylzirconocenes chlorides 2. Intermediates 2 reacted with aldehydes to obtain δ -selanyl allylic alcohols.

Keywords: Hydrozirconation, propargyl selenides, aldehydes, allylic alcohols.

Functionality-bearing allylic alcohols are the vital structure units of biologically active compounds^{1,2}. Allylic selenides are important intermediates in organic synthesis^{3,4}. So regio- and stereoselective synthesis of δ -selanyl allylic alcohol which combine the allylic alcohol and allylic selenide units together is of interest in organic synthesis. Hydrozirconation has emerged as a unique hydrometallation with some attractive features^{5,6}. Recently we have reported the stereoselective synthesis of α -heteroatom substituted allylic alcohols by hydrozirconation of heteroatom substituted alkynes². As an extention of our studies, we wish to report herein the hydrozirconation of propargyl selenides and its application in the synthesis of δ -selanyl allylic alcohols.

The (*E*)-3-selanyl vinylzirconocene chlorides **2** can be synthesized regio- and stereoselectivitely by hydrozirconation of propargyl selenides **1**. The intermediates **2** react with aldehydes **3** in CH₂Cl₂ at room temperature in the presence of AgClO₄ to afford δ -selanyl allylic alcohols (Scheme 1). The results are summarized in Table 1.

*E-mail: huangx@mail.hz.zj.cn

Mei Hua XIE et al.

Entry	\mathbb{R}^1	\mathbb{R}^2	Product	Yield $(\%)^b$
1	C ₆ H ₅ -	p-CH ₃ C ₆ H ₄ -	4 a	55
2	C ₆ H ₅ -	C ₆ H ₅ -	4b	63
3	C ₆ H ₅ -	p-ClC ₆ H ₄ -	4c	76
4	C ₆ H ₅ -	$p-NO_2C_6H_5-$	4d	75
5	Et	p-CH ₃ C ₆ H ₅ -	4e	58
6	Et	C ₆ H ₅ -	4f	61
7	Et	p-NO ₂ C ₆ H ₅ -	4g	73

Table 1 Yields of δ -hydroxy allylic selenides $4a \sim g^a$

^a1 mmol of propargyl selenides, 1.2 mmol of $Cp_2Zr(H)Cl$, 1.0 mmol of aldehydes were used. ^bIsolated yields based on propargyl selenides. All products were characterized by IR, ¹H NMR, MS spectra and elemental analysis.

The (E)-configuration of all products $4a \sim g$ was demonstrated by the coupling constants of the vinylic protons (15.1 – 15.7 Hz).

In conclusion, hydrozirconation of propargyl selenides provide a convenient method for the synthesis of functionalized allylic alcohols. The present procedure has the advantages of readily available starting materials, simple procedures, mild reaction conditions and regio- and stereoselectivity. The application of the allylic alcohols in organic synthesis is in progress in our laboratory.

General procedure: A mixture of hydrozirconocene chloride (1.2 mmol) and propargyl selenide (1) (1.0 mmol) in CH_2Cl_2 was stirred at room temperature for 20 min. To the resulting clear solution aldehyde **3** (1.0 mmol) was added followed by AgClO₄ (5 mol%). The reaction mixture turned dark brown gradually. After stirring at room temperature for 2-3hr, the reaction mixture was quenched with saturated NaHCO₃ aqueous solution. Extractive workup (EtOAc) followed by purification with flash chromatography (silica/hexanes-EtOAc 4:1) gave δ -selanyl allylic alcohols **4a~g**.

Acknowledgment

The project was supported by the National Natural Science Foundation of China (No. 29772007).

References

- 1. J. Shimada, S. L. Schreiber, Chem. News, 1995, 73, 27.
- 2. X. Huang, A. M. Sun, J. Chem. Research (S), 1999, 292 and references therein.
- a. H. J. Reich, J. Org. Chem., 1975, 40, 2570. b. H. J. Reich, M. C. Clark, W. W. Jr. Willis, J. Org. Chem., 1982, 47, 1618.
- 4. H. Takei, M. Miura, K. Kosugi, H. Takei, Tetra. Lett., 1980, 21, 87.
- 5. a. J. Schwartz, J. Organomet. Chem., Library, **1976**, *1*, 461. b. D. W. Hart, T. F. Blackburn, J. Schwartz, J. Am. Chem. Soc., **1975**, 97, 679.
- a. Review: P. Wipf, H. Jahn, *Tetrahedron*, **1996**, *52*, 12853. b. M. J. Dabdoub, M. L. Begnini, P. G. Jr. Guerrero, *Tetrahedron*, **1998**, *54*, 2371.

Received 29 April, 2002